Slurm for users

genotoul

06-11-2017

Summary

- 1. Introduction
 - Slurm architecture
 - Slurm terms
- 2. User and admin commands
 - Basics
 - User commands (srun, salloc, sbatch)
 - User and admin commands (sinfo, squeue, scancel, scontrol, sstat, sprio, sacctmgr)
- 3. Additional informations
 - Commands format
 - Slurm environment
 - Job arrays
 - Job dependencies
- 4. Slurm and MPI
 - Slurm MPI integration
 - Running MPI jobs
 - Running hybrid MPI OpenMP jobs

Introduction

SLURM architecture

- One central controller daemon slurmctld
- A daemon upon each computing node slurmd
- One central daemon for the database controls slurmdbd

Compute node daemons

Introduction

SLURM terms

- Computing node : computer used for the execution of programs
- Partition : group of nodes with specific characteristics (job limit, access controls, etc)
- ▶ Job : allocation of ressources assignet to a user for some time
- Step : sets of (possible parallel) tasks within a job

Where can I launch ? sinfo command displays resource usage and availability information for parallel jobs PARTITION AVAIL TIMELIMIT NODES STATE NODELIST workg* up 4-00:00:00 idle node[101-110,112-147] 46 workg* up 4-00:00:00 2 down node[111,148] infinite 1 interq mix genoview up infinite 1 up idle genosmp02 smpq

How can I launch a job script ? sbatch command > sbatch HELLO_WORLD.sub

Submitted batch job 6595

How to cancel a job ? scancel command > scancel 6595

srun,salloc,sbatch

Command	Description
srun	used to submit a job for execution or initiate job steps in real time (option -n number of core, -N number of node, time for time limit, etc). If necessary, srun will first create resource allocation in wich to run the parallel job
salloc	allocate resources (nodes, tasks, partition, etc), either run a command or start a shell. Request launch srun from shell (interactive commands within one allocation)
sbatch	allocate resources (nodes, tasks, partition, etc.) Launch a script containing sruns for series of steps

srun,salloc,sbatch

- All request an allocation of resources
- Similar set of command line options
- Request number of nodes, tasks, cpus, constraints, user info, dependencies, and lots more
- srun launches tasks (command) in parallel on the requested nodes
- salloc obtain a slurm job allocation. It can launch a task such as mpirun on the client, or open a shell on the client. srun is then used to launch tasks within the allocation
- sbatch is a shell script that contains multiple sruns within the allocation (multistep job)
- Command line options are preponderant
- The default is one task per node (unless -n or --cpus-per-task is used)

Sample srun

- srun launches a job that allocates resources (number of nodes, tasks, etc.) and is executed on each allocated cpu. Some basic parameters for srun command
 - > srun -l -J hostname --time=00:10:00 -N 2 --mem=40G -p workq --exclusive hostname
 - 1: node102
 - 0: node101
- -I : prepand task number to output
- -J : job name
- --time= : allocation time limit (format is days-hours:minutes:seconds)
- -p workq : specify the partition to use
- -N 2 : nomber of nodes required
- --mem : memory required per node
- --exclusive : exclusive acces to nodes (default is shared ressources)
- hostname : command to run

sbatch

- submit a batch script to slurm
- the batch script may contain options preceed with « #SBATCH » before any executable call
- assigned a jobId when script is successfully transferred to the slurm controler
- when job alloction is finally granted, Slurm runs a single copy of the batch script on the first node in the set of allocated nodes
- default stdout and stderr are directed to a file *slurm-%j.out* (can be modified with options -e and -o). %j is replaced by the jobID
- the script can be written in multiples languages like bash, ksh, python, etc

Sample sbatch

Same as previous srun in sbatch script HOSTNAME.sub #!/bin/bash

#SBATCH -time=00:10:00 # job time limit

#SBATCH -J hostname # job name

#SBATCH -N 2 # number of nodes

#SBATCH -p workq # partition to use

#SBATCH --exclusive # exclusive acces to nodes

srun -l hostname # submit parallel command

Options submitted on command line are preponderant

> sbatch -J toto HOSTNAME.sub

> squeue -a

Submitted batch job 6604

JOBID PA	ARTITION	NAME	USER ST	TIME	NODES NODELIST(REASON)
6604	workq	toto	root R	0:00	2 node[101-102]

12 | 06-11-2017 | Trivino Cédric | © Atos BDS | HPC | CEC

salloc

- salloc is used to allocate resources for a job in real time.
- Typically this is used to allocate resources and spawn a shell
- The shell be used to execute srun commands
- Basic parameters similar with srun and sbatch

> salloc -N 2
salloc: Granted job allocation 6612
salloc: Waiting for resource configuration
salloc: Nodes node[101-102] are ready for job

```
> echo $SLURM_JOB_NODELIST
node[101-102]
```

> salloc -n 1 --constraint=K40 -p interq salloc: Granted job allocation 6999 salloc: Waiting for resource configuration salloc: Nodes genoview are ready for job alloc 1 task no GPU node

13 | 06-11-2017 | Trivino Cédric | © Atos BDS | HPC | CEC

Command	Description
sinfo	display characteristics of nodes, partitions, reservations
squeue	display jobs and their state
scancel	cancel a job or set of jobs
scontrol	administrative tool used to view and/or modify SLURM state. But can also be used to get information on jobs, partitions, reservations
sstat	show status of running jobs
sprio	view the factors that comprise a job's scheduling priority
sacctmgr	setup accounts, specify limitations on users and groups

User and admin commands sinfo

SIUCM workload manager

sinfo di	spla	ay inforr	natic	on ab	out Sl	urm no	odes and	partitions
> sinfo -n	node[108-110]						
PARTITION A	AVAIL	TIMELIMIT	NODES	STATE	NODELIST			
workq*	up	4-00:00:00	3	idle	node[108-	110]		
unlimitq	up	infinite	3	idle	node[108-	110]		
wflowq	up	infinite	3	idle	node[108-	110]		
interq	up	1-00:00:00	Θ	n/a				
smpq	up	infinite	Θ	n/a				
list reas	sons	s nodes	are i	in the	e dowr	n, drai	ned or fai	l state
> sinfo -F	31							
Mon Nov 6	14:42	2:53 2017						
REASON		USER		TIMEST	1MP	STATE	NODELIST	
Node unexpe	ectedl	y re root(0.)	2017-10)-16T16:30	:58 down	node111	
list by s	stat	e :						
> sinfo -t	ALLOC							
PARTITION A	AVAIL	TIMELIMIT	NODES	STATE	NODELIST			
workq*	up	4-00:00:00	3	alloc	node[114,	126,135]		
unlimitq	up	infinite	3	alloc	node[114,	126,135]		
wflowq	up	infinite	3	alloc	node[114,	126,135]		

15 | 06-11-2017 | Trivino Cédric | © Atos BDS | HPC | CEC

squeue

- squeue display jobs and their state. Basic parameters for squeue command :
 - -a : display info about all jobs and partitions
 - -j <job_list> : report more info about a particular job or jobs
 - u <user> : report job information for a specific user
 - -i <seconds> : repeatedly gather and report thre requested information
 - --start : expected start time of pending job (if backfill scheduling plugin is used)

> squeue -a

	NODELTST()	JOBID P RFASON)	ARTITION	NAME	USER	ST	TIME	NODES	
	1021	6612	workq	bash	root	R	7:56	2	node[101-
5	06-11-2017	Triving 6542	a Anglerq	TurboVNC	dgorecki	R	1-06:19:31	1 9	genoview

BDS | HPC | CEC

scancel

- scancel is used to signal jobs or job steps. Usage : > scancel <jobID> <stepID>
- Usefull options
 - n
 : restrict cancel to jobs with this job name
 - p
 : restrict cancel to jobs in this partition
 - -t : restrict cancel to jobs in this state
 - -s
 : send signal to job or step
 - u
 : restrict cancel to jobs owned by this user
 - -w
 : cancel any job using any of the given hosts

> scancel -p workq -u myuser -t PD

scontrol

- scontrol is a tool used to view and modify SLURM configuration state
- can be used to get information on configuration, jobs, nodes, partitions, reservations ...
 - scontrol show config
 - scontrol show job <jobId>
 - scontrol show node <node>
 - scontrol show partition <partition>
 - scontrol show reservation <res>

> scontrol show job 6924

JobId=6924 JobName=xhpl

UserId=dgorecki(13549) GroupId=BULL(3000) MCS_label=N/A

Priority=1 Nice=0 Account=bull QOS=others

JobState=RUNNING Reason=None Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

RunTime=00:24:54 TimeLimit=03:00:00 TimeMin=N/A

 SubmitTime=2017-11-02T17:30:23
 EligibleTime=2017-11-02T17:30:23

 18
 | 06-11-2017 | Triving Cédric | C Atos StartTime=2017-11-00T14:35:23 EndTime=2017-11-06T17:35:23 Deadline=N/A

 BDS
 | HPC | CEC PreemptTime=None SuspendTime=None SecsPreSuspend=0

sprio

- use to view the components of a job's scheduling priority when multi-factor priority plugin is installed
- return
- the PRIORITY column report the global priority of job (highest is prior)
- by default, returns information for all pending jobs
 - sprio -u dgorecki

JOBID	USER	PRIORITY
6930	dgorecki	1
6931	dgorecki	1
6933	dgorecki	1

4Sunt $r_0 06$ $s_1 d_w 20 d_t F d_t$ Triving $r_C e d_t r_{ty} | C Atos$ BDS i t y H C an e C E C = (null)

QOS, sacctmgr

- QOS (Quality of Services) are used in SLURM for grouping limitations and priorities
- Show QOS list
 - > sacctmgr show qos

> sacctmgr show assoc user=dgorecki

Cluster MaxTRES M	Account 1axTRESPer	User Par Node M	tition Share Gr	Jobs	GrpTRES GrpSubmit	GrpWall	GrpTRESMins MaxJobs
axSubmit	MaxWall	MaxTRESM	lins QC	S De	f QOS GrpTRESRunMin		
genobull	bull de	gorecki un	limitq 1				
2500	сри	=6000000	others_unlimit	others_	_u+		
genobull	bull de	gorecki	1				
2500	сри	=6000000	contributors, other	s oth	ers		

Additional informations

Commands format

some commands like sacct and squeue give the possibility to tune output format

sacct -D --format=jobid%-13,user%-15,uid,jobname%-15,state
%20,exitcode,Derivedexitcode,nodelist% -X -job 6969

	JobID	User	UID J	lobName		State	ExitCode Deri	vedExitCode	Nod	eList
6969	root		0 toto		COM	PLETED	0:0	0:0	node[101	-102]
sq	ueuefor	mat="%10i	%12u %12j	%.8M %.81	. %.10Q	%10P	%10q %10r	%11v %12 ⁻	T %D %R"	-S "T"
JOBID NODELIST	USER (REASON)	NAME	TIME TIME_L	_IM PRIORITY	PARTITION	QOS	REASON	RESERVATION	STATE	NODES
6612 102]	root	bash	16:09 4-00:0	90:00	1 workq	norma	al None	(null)	RUNNING	2 node[101-
6542	dgorecki	TurboVNC	1-06:27:44 UNL	IMITE	1 interq	norma	al None	(null)	RUNNING	1 genoview

Slurm job environment

evironment variables

Environment variable	Correspondence
SLURM_JOBID	Job ID
SLURM_NNODES	#SBATCH -N
SLURM_NODELIST	Nodelist which is allocated to the job
SLURM_NTASKS	#SBATCH -n
SLURM_NTASKS_PER_NODE	#SBATCHtasks-per-node
SLURM_CPUS_PER_TASK	#SBATCH -c
SLURM_SUBMIT_DIR	Job submission directory

https://slurm.schedmd.com/sbatch.html

Slurm job environment

evironment variables

- --export option identify which environment variables are propagated to the batch job
 - --export=ALL : all current shell variables are propagated
 - --export=NONE : no variable propagated
 - --export=VARIABLE=value : propagate the current variable srun --export=LOGTYPE=debug,LOGFILE=log.out ./program

Job arrays

sbatch

- sbatch –a | --array=<indexes>
 - submit a job array, multiple jobs to be executed with identical parameters
 - multiple values may be specified using a comma separated list and/or a range of values with a "-" separator
 - --array=1-10
 - --array=0,6,16-32
 - --array=0-15:4 : a step of 4
 - --array=1-10%2 : a maximum of 2 simultaneously running tasks

Variable	Correspondance
SLURM_ARRAY_TASK_ID	Job array ID (index) number
SLURM_ARRAY_JOB_ID	Job array's master job ID number
SLURM_ARRAY_TASK_MAX	Job array's maximum ID (index) number
SLURM_ARRAY_TASK_MIN	Job array's minimum ID (index) number
SLURM_ARRAY_TASK_COUNT	total number of tasks in a job array

Job dependencies

sbatch

- sbatch -d | --dependency=<dependency_list>
 - defer the start of this job until the specified dependencies have been satisfied completed
 - <dependency_list> is of the form <type:jobId[:jobID][,type:jobID[:jobID]]>, example : sbatch --dependency=afterok:6265 HELL0.job

Туре	Correspondance
after	this job can begin execution after the specified jobs have begun execution
afterany	this job can begin execution after the specified jobs have terminated
afterok	This job can begin execution after the specified jobs have successfully executed (ran to completion with an exit code of zero)
afternotok	This job can begin execution after the specified jobs have terminated in some failed state (non-zero exit code, node failure, timed out, etc)
singleton	This job can begin execution after any previously launched jobs sharing the same job name and user have terminated

SLURM and MPI

SLURM MPI integration

- MPI use with slurm depends upon the type of MPI being used. There are three fundamentally different modes of operation used by these various MPI implementations :
 - Slurm directly launches the tasks and performs initialization of communications (use of PMI library)
 - Slurm creates a resource allocation for the job and then mpirun launches tasks using Slurm's infrastructure
 - Slurm creates a resource allocation for the job and then mpirun launches tasks using some mechanism other than Slurm, such as SSH or RSH (outside slurm's monitoring or control)
- PMI library:
 - The use of a PMI library offer tight integration with slurm and the simplest way to launch an MPI application.
 - The PMI library has been used for quite some time as a means of exchanging information needed for interprocess communication.

Running MPI jobs

srun

OpenMPI is configured with pmi2 support (compiled with --with-pmi=). The OMPI jobs can be launched directly using the srun command.

```
> module load compiler/intel-2018.0.128 mpi/openmpi-1.8.8-intel2018.0.128
```

> mpicc -o hello_world hello_world.c

> srun -n 12 -N 2 --ntasks-per-node=6 hello_world

Hello world from process 4 of 12 - node101

Hello world from process 5 of 12 - node101

Hello world from process 3 of 12 - node101

Hello world from process 0 of 12 - node101

Hello world from process 2 of 12 - node101

Hello world from process 9 of 12 - node102

Hello world from process 6 of 12 - node102

Hello world from process 7 of 12 - node102

Hello world from process 10 of 12 - node102

Hello world from process 8 of 12 - node102

Hello world from process 1 of 12 - node101

Hello world from process 11 of 12 - node102 $\,$

Running MPI jobs

mpirun

But it is also possible to launch an MPI application through the common mpirun command. Example of a full bash script :

```
#!/bin/bash
#SBATCH -J mpi_job
#SBATCH --nodes=2
#SBATCH --tasks-per-node=6
#SBATCH --time=00:10:00
cd $SLURM_SUBMIT_DIR
module purge
module load compiler/intel-2018.0.128 mpi/openmpi-1.8.8-intel2018.0.128
mpirun -n $SLURM_NTASKS -npernode $SLURM_NTASKS_PER_NODE ./hello_world
```


You can use --cpus-per-task in order to set the number of OpenMP threads

```
#!/bin/bash
#SBATCH -J hybrid mpi openmp job
#SBATCH --nodes=2
#SBATCH --tasks-per-node=4
#SBATCH --cpus-per-task=8
cd $SLURM SUBMIT DIR
module purge
module load compiler/intel-2018.0.128 mpi/openmpi-1.8.8-intel2018.0.128
[ -n "$SLURM CPUS PER TASK" ] && export OMP NUM THREADS=$SLURM CPUS PER TASK
srun ./hybrid program
```


Thanks

For more information please contact: M+ 33 6 14655608 cedric.trivino@atos.net

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Bull, Canopy, equensWorldline, Unify, Worldline and Zero Email are registered trademarks of the Atos group. March 2017. © 2017 Atos. Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

